
Release It!: Design And Deploy
Production-Ready Software

(Pragmatic Programmers)
 PDF

http://orleanswer.com/en-us/read-book/L43X7/release-it-design-and-deploy-production-ready-software-pragmatic-programmers.pdf?r=UKcq7b5F%2FW%2BPJ0c46melQponOsKhkXIEjBCe6%2FgV3SE%3D
http://orleanswer.com/en-us/read-book/L43X7/release-it-design-and-deploy-production-ready-software-pragmatic-programmers.pdf?r=ngmBXJiO8Sl9uiN%2FGfSZt7TvhbB5VRBrLTvYZHDz%2B0Y%3D

Whether it's in Java, .NET, or Ruby on Rails, getting your application ready to ship is only half the

battle. Did you design your system to survivef a sudden rush of visitors from Digg or Slashdot? Or

an influx of real world customers from 100 different countries? Are you ready for a world filled with

flakey networks, tangled databases, and impatient users?If you're a developer and don't want to be

on call for 3AM for the rest of your life, this book will help.In Release It!, Michael T. Nygard shows

you how to design and architect your application for the harsh realities it will face. You'll learn how to

design your application for maximum uptime, performance, and return on investment.Mike explains

that many problems with systems today start with the design.

File Size: 3954 KB

Print Length: 326 pages

Simultaneous Device Usage: Unlimited

Publisher: Pragmatic Bookshelf; 1 edition (March 30, 2007)

Publication Date: November 5, 2012

Sold by:Â Digital Services LLC

Language: English

ASIN: B00A32NXZO

Text-to-Speech: Enabled

X-Ray: Not Enabled

Word Wise: Not Enabled

Lending: Not Enabled

Enhanced Typesetting: Not Enabled

Best Sellers Rank: #163,761 Paid in Kindle Store (See Top 100 Paid in Kindle Store) #19

inÂ Kindle Store > Kindle eBooks > Computers & Technology > Networking > Client-Server

Systems #63 inÂ Books > Computers & Technology > Networking & Cloud Computing > Data in

the Enterprise > Client-Server Systems #513 inÂ Books > Computers & Technology >

Programming > Software Design, Testing & Engineering > Software Development

The subtitle of this book might as well be Architecture and Design for the Paranoiac. The book lays

out some critical aspects to creating and rolling out stable software systems. It's directed to those

working in the enterprise arena and need the utmost from stability, capacity, and overall design.

Nygard's definition of "enterprise" is somewhat broad in that he considers "enterprise" to be any

system providing mission-critical support to a business. Regardless of how you define your

particular software, I'm sure you'll find something useful in this book.Nygard presents the book from

an anti-pattern/pattern approach: he uses case studies to illustrate how critical errors in design or

implementation (anti-patterns) have caused disasterous outages. He then moves on to show how

application of solid design patterns could have avoided the problems. He also spends some time

going in to detail on how some of the outages have happened, including brief discussions on

network packet captures and decompiling third party drivers.There are a lot of solid fundamentals in

the book: dealing with exceptions at system integration points, thread synchronization, avoid rolling

your own primative feature libraries such as connection pools, and make sure to test third-party

libraries which play critical roles. The general approach of discussing anti-patterns followed by

patterns is also a nice way of putting forth the material.There are a lot of more complex bits covered

as well, such as thinking ahead on how you'll deal with bots and crawlers, avoiding AJAX overkill,

designing ahead for and using session. I also liked that Nygard talks about the importance of

involving the customer in decisions on thresholds and other critical boundaries.

Once in a year, I tag a book as "book of the year", the best book I read during the year. 2007 is not

over, but this my "2007 book of the year", I know that.Frankly, I just bough this book because it's

published by the "pragmatic programmers" and I trust these guys. The title is not even appealing. I

knew quickly that I will discover many things.For a long time, I wonder what to do to build up a

system which is fine in production, but I didn't understand quite right what was needed (I know now

that I really misunderstood the problem). The first thing that came to my mind was to make the

software strong (a good thing to do by the way) ; the second thing that came to my mind was to

make it really, really strong (which starts to be stupid).Michael helps us to understand that systems

fail anyway. But it should fail fast (and can often fail only partially), it must facilitate diagnosis and

quick restart. And design must deal with that. But the author doesn't stay in general considerations,

he points out specific patterns and antipatterns for the systems design, by means of stability and

capacity. The vast majority of article tend to exposes how new technologies make the life so easy.

The author revisit technologies and technical choices throught the production glasses: why AJAX

should be considered with care, why we must think about pre-computed pages instead of ynamic

composition in some cases, why caches is not a one-size-fits-all answer and so on. Another

important point well illustrated: a system is software + hardware and the architecture must be

though with physical deployment and hardware architecture in mind. Promotion of full independance

of the architecture over the deployment is plain wrong. There are so many subjects tackled her, I

can't speak about them all, sorry.

This book is intended for architects, designers, and developers of software on which a business

depends and whose failure costs money. The tone is informal and the style is easily read. Some

architects may wish for more rigor and consider it too easily read but they might still benefit because

it contains quite a bit of wisdom earned by experience.The book discusses issues of uptime, failure,

and maintainability with examples drawn from the author's experience and from other industries.

Making the point from more than one point of view serves to drive it home.This is not a

programming book but the illumination of a problem is often improved by a snippet of code. The

code is Java and is easily read by anyone familiar with programming. Having some familiarity with

multi-threaded programming in following the explanations and their examples will make them a little

easier to read but is not necessary to get the point. (Even if you truly have no knowledge of Java,

looking up JDBC, JVM, EJB, JSP, J2EE, log4j, and servelet will not be much effort because not

much knowledge of them is required.) The examples emphasize web applications because, I

suppose, that's the environment most vulnerable to huge capacity requirements, more complex

environments, more numerous causes of failure, and failures that are more visible.The author's

analysis of the problem space has two dimensions --- stability and capacity --- in which a given

enterprise system can be located. The analysis also has two categories: general design and

operations.Stability and CapacityA given coordinate, on the stability axis, for example, implies the

presence and absence of features that improve and diminish stability.

Release It!: Design and Deploy Production-Ready Software (Pragmatic Programmers) Agile in a

Flash: Speed-Learning Agile Software Development (Pragmatic Programmers) Language

Implementation Patterns: Create Your Own Domain-Specific and General Programming Languages

(Pragmatic Programmers) Debug It!: Find, Repair, and Prevent Bugs in Your Code (Pragmatic

Programmers) Good Math: A Geek's Guide to the Beauty of Numbers, Logic, and Computation

(Pragmatic Programmers) Test Driven Development for Embedded C (Pragmatic Programmers)

OpenGL ES 2 for Android: A Quick-Start Guide (Pragmatic Programmers) Practical Vim: Edit Text

at the Speed of Thought (Pragmatic Programmers) Modern Radio Production: Production

Programming & Performance (Wadsworth Series in Broadcast and Production) Release Your Pain -

Resolving Soft Tissue Injuries with Exercise and Active Release Techniques Release Your Pain:

Resolving Repetitive Strain Injuries with Active Release Techniques Microsoft Exchange Server

http://orleanswer.com/en-us/read-book/L43X7/release-it-design-and-deploy-production-ready-software-pragmatic-programmers.pdf?r=Ge6PYZ3nNq8o8LC3YIlwJ9zji9qfzIX6KR2V3WYA0gU%3D

2013: Design, Deploy and Deliver an Enterprise Messaging Solution Controller-Based Wireless LAN

Fundamentals: An end-to-end reference guide to design, deploy, manage, and secure 802.11

wireless networks Create Your Own Operating System: Build, deploy, and test your very own

operating systems for the Internet of Things and other devices Full-Stack JavaScript Development:

Develop, Test and Deploy with MongoDB, Express, Angular and Node on AWS Danger Ready:

Prepare to Survive Any Threat and Live to Tell the Tale: (Terrorist Attacks, Mass-Shootings,

Earthquakes, Civil Unrest - Be Ready to Protect Your Family Whatever the Danger) Prepper

Paracord: Quick Deploy Sinnets Algorithms: C++: Data Structures, Automation & Problem Solving,

w/ Programming & Design (app design, app development, web development, web design, jquery, ...

software engineering, r programming) Formulas and Calculations for Drilling, Production, and

Workover, Fourth Edition: All the Formulas You Need to Solve Drilling and Production Problems

Formulas and Calculations for Drilling, Production, and Workover, Third Edition: All the Formulas

You Need to Solve Drilling and Production Problems

http://orleanswer.com/en-us/dmca

